Influence of water on the formation of O2-reactive divalent metal enolate complexes of relevance to acireductone dioxygenases.
نویسندگان
چکیده
Reaction conditions were evaluated for the preparation of [(6-PhTPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO(4) (3) and [(6-Ph(2)TPA)Co(PhC(O)C(OH)C(O)Ph)]ClO(4) (7), two complexes of structural relevance to the enzyme/substrate (ES) adduct in Ni(II)- and Co(II)-containing forms of acireductone dioxygenase. The presence of water in reactions directed at the preparation of 3 and 7 was found to result in isomerization of the enolate precursor 2-hydroxy-1,3-diphenylpropane-1,3-dione to give the ester 2-oxo-2-phenylethylbenzoate. Performing synthetic procedures under dryer conditions reduced the amount of ester production and enabled the isolation of 3 in high yield. This complex was comprehensively characterized, including by X-ray crystallography. Using similar conditions for the 6-Ph(2)TPACo-containing system, the amount of ester generated was only modestly affected, but the formation of a benzoate complex ([(6-Ph(2)TPA)Co(O(2)CPh)]ClO(4), 10) resulting from ester hydrolysis was prevented. The best preparation of 7 was found to involve dry conditions and short reaction times. The approach outlined herein toward determining appropriate reaction conditions for the preparation of 3 and 7 involved the preparation and characterization of several air-stable (6-PhTPA)Ni- and (6-Ph(2)TPA)Co-containing analog complexes having enolate, solvent, and benzoate ligands. These complexes were used as paramagnetic (1)H NMR standards for evaluation of reaction mixtures containing 3 and 7.
منابع مشابه
Aliphatic carbon-carbon bond cleavage reactivity of a mononuclear Ni(II) cis-beta-keto-enolate complex in the presence of base and O2: a model reaction for acireductone dioxygenase (ARD).
The synthesis, characterization, and reactivity properties of a mononuclear Ni(II) cis-beta-keto-enolate complex, [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (1) (6-Ph2TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine) are reported. Complex 1 was characterized by X-ray crystallography, elemental analysis, 1H NMR, and electronic absorption and infrared spectroscopy. Treatment of 1 w...
متن کاملMetal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure
The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...
متن کاملMetal-Ion-Coordinating Properties of Various Amino Acids, Investigation of the Essential Function in Biological Systems regarding to their Nano-Structure
The acidity constants of some amino acids (Am) were determined by potentiometric pH titration. The stability constants of the 1:1 complexes formed between M2+: Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ and Am2-, were determined by potentiometric pH titration in aqueous solution (I = 0.1 M, NaNO3, 25°C). The order of the stability constants was reported. It is shown that the stability of the bi...
متن کاملInfluence of Metal Ion Complexation on the Acid Dissociation of 4'-Carboxybenzo-24-Crown-8 in an Ethanol-Water Mixture
A spectrophotometric method was used to determine the acidity constant of 4'-carboxybenzo-24-crown-8 in 52% (w/w) ethanol-water mixture. The acid dissociation constant, Ka, was found to increase in the presence of Na+, K+, Rb+, Cs+ and Tl+ ions. The formation constants of the resulting 1:1 complexes between the carboxycrown a...
متن کاملMetal-dependent activity of Fe and Ni acireductone dioxygenases: how two electrons reroute the catalytic pathway.
Two virtually identical acireductone dioxygenases, ARD and ARD', catalyze completely different oxidation reactions of the same substrate, 1,2-dihydroxy-3-keto-5-(methylthio)pentene, depending exclusively on the nature of the bound metal. Fe(2+)-dependent ARD' produces the α-keto acid precursor of methionine and formate and allows for the recycling of methionine in cells. Ni(2+)-dependent ARD in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 40 40 شماره
صفحات -
تاریخ انتشار 2011